

# **NAMIBIA UNIVERSITY**

OF SCIENCE AND TECHNOLOGY

# **FACULTY OF HEALTH, APPLIED SCIENCES & NATURAL RESOURCES**

## **DEPARTMENT OF MATHEMATICS AND STATISTICS**

| QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics |                                      |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------|--|--|--|
| QUALIFICATION CODE: 07BAMS LEVEL: 6                                      |                                      |  |  |  |
| COURSE CODE: FIM601S                                                     | COURSE NAME: Financial Mathematics 2 |  |  |  |
| SESSION: JULY 2022                                                       | PAPER: THEORY                        |  |  |  |
| DURATION: 3 HOURS                                                        | MARKS: 100                           |  |  |  |

| SUPPLEMENTARY/ | SECOND OPPORTUNITY EXAMINATION QUESTION PAPER |
|----------------|-----------------------------------------------|
| EXAMINER       | Mrs. H. Y. Nkalle                             |
| ,              | Dr. V. Katoma                                 |
| MODERATOR:     | Prof. A.S. Eegunjobi                          |

| INSTRUCTIONS |                                                                      |  |  |  |
|--------------|----------------------------------------------------------------------|--|--|--|
| 1.           | Answer ALL the questions in the booklet provided.                    |  |  |  |
| 2.           | Show clearly all the steps used in the calculations.                 |  |  |  |
| 3.           | All written work must be done in blue or black ink and sketches must |  |  |  |
|              | be done in pencil.                                                   |  |  |  |

## **PERMISSIBLE MATERIALS**

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

#### Question 1

| 1.1 Define the Net Present Value?        | [2] |
|------------------------------------------|-----|
| 1.2 Define the Internal Rate of Return?  | [2] |
| 1.3 Define Discounted Cash flow?         | [2] |
| 1.4 Zero-coupon bond?                    | [2] |
| Question 2                               |     |
| Name 4 Instruments in the money markets. |     |
| Question 3                               |     |

# Question 4

Mention 3 ways in which Derivatives are used.

(a) Write an expression to give the amount of interest earned from time t to time t+s in terms of A only. [2]

[6]

(b) Use (a) to find the annual interest rate, i.e., the interest rate from the t years to time t+1 years. [3]

#### **Question 5**

Calculate the present value of an annuity of amount N\$ 100.00 paid annually for 5 years at the rate of interest of 9%. [5]

#### Question 6

An investment of N\$ 200.00 returns N\$ 120.00 at the end of 1<sup>st</sup> year and N\$ 100.00 at the end of 2<sup>nd</sup> year. What is the internal rate of return (IRR)? [5]

#### **Question 7**

An investor is able to borrow N\$ 1000.00 at 8% effective for one year and immediately invest the N\$ 1000.00 at 12% effective for the same year. Find the investor's Internal rate of return on this Transaction. [3]

#### **Question 8**

Frans is considering a project which requires an amount of N\$3000.00 and another amount of N\$1000.00 after one year. In two years', time, when the project ends, she expects an inflow of N\$4500.00. what is the internal rate of return (IRR) of this project? Is the above Investment profitable? Assume that Frans can lend and borrow at the same fixed rate of 7.13% per annum. [10]

#### **Question 9**

Consider the following two cash-flow sequence:

| Time (Year) | 0   | 1  | 2  | 3  |
|-------------|-----|----|----|----|
| Project A   | -80 | 96 | 1  | 5  |
| Project B   | -80 | 10 | 10 | 90 |

Show that NPV(A) > NPV(B) if the interest rate is r = 0.06 or 6%.

[10]

#### Question 10

Suppose a loan size of  $l_0$  is repaid by nm equal installments at size x at times  $\frac{1}{m}, \frac{2}{m}, ..., \frac{nm}{m} = n$ . Suppose the interest rate charged is i% per annum effective. Find an expression for the capital repayment in the  $k^{th}$  installment. [5]

#### Question 11

An investor is considering whether to invest in either or both of the following loans: Loan A: For a purchase price of N\$ 20000, the investor will receive N\$ 1000 per annum payable quarterly in arrear for 15 years.

**Loan B:** For a purchase price N\$ 11000, the investor will receive an income of N\$605 per annum, payable annually in arrear for 18 years, and a return of his outlay at the end of this period.

The investor may borrow money at 4% per annum. Would you advise him to invest in either loan, if so, which would be the more Profitable? [10]

### Question 12

A loan of \$5000.00 is repaid by level annual payment over 3 years with the interest rate of 4%. Represent the loan schedule in a table form. [10]

#### **Question 13**

Suppose an investor has a portfolio which includes security A and security B. The price at time 0 are as follows:  $s_A = 6$  and  $s_B = 11$ . He assesses the prices at time 1 will be  $S_1^A = 7$  and  $S_1^B = 14$  if the market goes up and  $S_1^A = 5$  and  $S_1^B = 10$  if the market goes down. Check there is an arbitrage opportunity. [5]

#### **Question 14**

Suppose certificates of deposit is issued with a face value of N\$ 500000.00 and a coupon of 6% for 90 days. After 30 days, its yield has fallen to 5.75%. What is the price? [8]

3 | Page

# **Question 15**

Consider the cash flow sequence, a=(5,9,20,4,2), b=(6,7,3,1,36) at time t=0,...,4. Find the NPV of the cash flow assuming an interest rate of 7%. [6]

End of paper Total marks: 100